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[1] The proportion of an aquifer with constituent concentrations above a specified threshold
(high concentrations) is taken as a nondimensional measure of regional scale water quality.
If computed on the basis of area, it can be referred to as the aquifer scale proportion. A
spatially unbiased estimate of aquifer scale proportion and a confidence interval for that
estimate are obtained through the use of equal area grids and the binomial distribution.
Traditionally, the confidence interval for a binomial proportion is computed using either the
standard interval or the exact interval. Research from the statistics literature has shown that
the standard interval should not be used and that the exact interval is overly conservative.
On the basis of coverage probability and interval width, the Jeffreys interval is preferred.
If more than one sample per cell is available, cell declustering is used to estimate the aquifer
scale proportion, and Kish’s design effect may be useful for estimating an effective
number of samples. The binomial distribution is also used to quantify the adequacy of a grid
with a given number of cells for identifying a small target, defined as a constituent that
is present at high concentrations in a small proportion of the aquifer. Case studies illustrate
a consistency between approaches that use one well per grid cell andmanywells per cell. The
methods presented in this paper provide a quantitative basis for designing a sampling
program and for utilizing existing data.
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1. Introduction

[2] Regional assessments of groundwater quality have
been implemented in Europe [Ward et al., 2004; Grath et al.,
2007;Wendland et al., 2008], North America [Lesage, 2004;
Lapham et al., 2005], and elsewhere (as cited by Rosen and
Lapham [2008] and Mendizabal and Stuyfzand [2009]).
These assessments often include sampling for a large number
of constituents (tens to >100) in a large number of wells (>100
to >1000). In addition, a comprehensive assessment program
can be conducted in a large number of groundwater basins
(sometimes >100) [Belitz et al., 2003]. In recent years, robust
measures and nonparametric statistical tests [Helsel and
Hirsch, 2002] have been used to characterize the data from
these assessments. For example, chemical concentrations are
summarized using box plots that illustrate the median, quar-
tiles, and range of the data. Although medians and quartiles
are robust measures, they do include units of concentration,
and therefore, it can be difficult to compare one chemical
constituent to another. The issue of comparability can be
addressed through the use of indices [Backman et al., 1998;
Rentier et al., 2006; Stigter et al., 2006] or if concentrations

are normalized by a relevant value, such as a human health
benchmark; Toccalino and Norman [2006] defined these
normalized concentrations as benchmark quotients. Indices
and benchmark quotients are dimensionless, thus allowing
for a comparative analysis of different chemicals. Worrall
and Kolpin [2003], in an evaluation of groundwater vulner-
ability, note that application of indices can involve subjective
choices in the weighting of the component factors.
[3] This paper, recognizing the utility of dimensionless

measures, addresses the issue of estimating the proportion of
an aquifer where the concentration of a given constituent is
above a specified threshold. The threshold of interest could be
a human health benchmark, some fraction of a benchmark, or
it could be an analytical detection level. For the purposes of
discussion, concentrations above a threshold are referred to as
high. In addition, the proportion of an aquifer with high
concentrations is assessed on the basis of area rather than
volume [Reijnders et al., 1998]; the area‐based proportion is
defined here as the aquifer scale proportion.
[4] The use of aquifer scale proportion as a measure of

water quality focuses attention on the aquifer and the con-
stituent. From this perspective, one constituent may be more
noteworthy than another, not because it has a larger median
concentration or benchmark quotient, but because it is high in
a larger proportion of the aquifer. Similarly, one aquifer might
be considered more contaminated than another because it has
a larger aquifer scale proportion for a particular constituent.
Aquifer scale proportion can also be computed for a class of
constituents, such as trace elements or organic compounds,
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thus allowing for an assessment of which constituent class has
a greater impact on groundwater quality. Aquifer scale pro-
portion can also be used to obtain a better understanding of
important processes affecting noteworthy constituents
[Broers, 2002, 2004]. The use of aquifer scale proportion as a
measure of water quality does not necessarily equate to risk to
human health. Other factors, including population served,
toxicity, actual exposure levels, and potential synergistic
effects of multiple constituents, also need to be considered.
[5] The use of proportion as a measure of groundwater

quality is certainly not new. Reijnders et al. [1998] and
Broers [2002, 2004] used detection frequency within a
specified area as an estimator of proportion and evaluated
uncertainty through the use of the cumulative binomial dis-
tribution and the Blyth and Still [1983] interval, respectively.
Broers [2002] also used the binomial distribution to evaluate
the probability of detecting contamination. These studies did
not consider the potential influence of spatial bias due to
clustering of data.
[6] The issue addressed in this paper is the extent to which

an observed detection frequency is representative of the
aquifer. This paper relies on equal area grids for providing
spatially unbiased estimates of aquifer scale proportion and
on the use of the binomial distribution for assessing the
uncertainty associated with that estimate. An equal area grid
could be developed for an aquifer system or for a part of
an aquifer system; the term aquifer is used to refer to either
situation.
[7] Equal area grids can be used to design a sampling

network [Gilbert, 1987; Alley, 1993]. With this design, an
aquifer is divided into cells of equal area. The cells can be
defined using a rectilinear grid or they can have irregular
shape [Scott, 1990]. One well is then randomly selected for
sampling within each grid cell, thus avoiding the potential
problem of clustered data. Given one well per cell, the aquifer
scale proportion is equal to the detection frequency for the
high concentrations. For the purposes of discussion, this is
referred to as the grid‐based approach.
[8] Equal area grids can also be used to provide spatially

unbiased estimates of aquifer scale proportion when there is
more than one well per grid cell (cell declustering) [Journel,
1983; Isaaks and Srivastava, 1989]. For the purposes of
discussion, this is referred to as the spatially weighted
approach, and it is discussed in more detail in the main body
of the paper.
[9] The purpose of this paper is to obtain an estimate of

aquifer scale proportion and to assess the uncertainty in that
estimate. The main body of the paper is divided into eight
sections (sections 2–9). In section 2, an idealized conceptu-
alization of an aquifer is presented and used to illustrate the
utility of equal area grids. In sections 3 and 4, the binomial
distribution is introduced and then used to estimate a confi-
dence interval for the grid‐based aquifer scale proportion.
Section 4 draws on important findings from the statistics
research literature, particularly the shortcomings of using the
standard interval as a basis for estimating confidence inter-
vals. Sections 5 and 6 extend the analysis from a grid‐based
approach to a spatially weighted approach. In section 7, the
binomial distribution is used to evaluate the adequacy of a
grid of a given number of cells for identifying a small target
(a constituent present at high concentrations in a small pro-
portion of the aquifer). Section 7 addresses the issue of
whether a small target is likely (or unlikely) to be detected

when water quality samples are collected using a grid‐based
approach. In section 8, the binomial distribution is used to
address the issue of prevalence when using a grid‐based
approach; prevalence can be used as a criterion for choosing
which constituents, among a very large number, should be
the subject of reporting and/or additional focus. In section 9,
case studies are used to illustrate the approaches developed
in the previous sections.

2. Idealization of an Aquifer for the Purpose
of Estimating Aquifer Scale Proportion

[10] A spatially unbiased estimate of aquifer scale pro-
portion can be obtained by dividing an aquifer into grid cells
of equal area. For example, consider the idealization of a two‐
dimensional aquifer divided into 100 grid cells (Figure 1).
[11] In Figures 1a–1d, the dark cells are characterized by

uniformly high concentrations, and the white cells are char-
acterized by uniformly low concentrations. Since there are
nine dark cells, the aquifer scale proportion is 0.09. The
proportion obviously does not depend on location (corner or
center of domain), shape (square or rectangular), or distri-
bution (compact or distributed). If one were to obtain one
water quality sample per cell, then one would obtain exactly
nine samples with high concentration, and the detection fre-
quency (number of samples with high concentrations/total
number of samples) would be 0.09. For this highly idealized
(and highly structured) representation, there is no uncertainty
associated with the estimate of aquifer scale proportion.
[12] In Figures 1e–1h, there are 100 cells total, of which 36

are gray. Within each of the gray cells, one quarter of the cell
is characterized by high concentrations, and the remainder is
characterized by low concentrations. The gray cells can be
conceptualized as a 2 × 2 grid with one dark “subcell”
(Figure 1i) or as a 4 × 4 grid with four dark subcells
(Figure 1j). Independent of conceptualization, the proportion
of the aquifer with high concentrations is 0.09 (36/100 × 1/4).
The aquifer scale proportion does not depend on the location,
shape, or distribution of the gray cells nor does it depend on
the location, shape, or distribution of dark subcells within the
gray cells. If one were to randomly obtain one water quality
sample from each cell, then one would obtain 64 low samples
from the 64 white cells and one would expect to obtain 9 high
samples and 27 low samples from the 36 gray cells; by
chance, one could obtain fewer or more than nine high
samples. Unlike Figures 1a–1d, there is uncertainty associ-
ated with the estimate of the aquifer scale proportion in
Figures 1e–1h.
[13] In Figure 1k, there are 100 light gray cells.Within each

and every light gray cell, 9% of the cell is characterized by
high concentrations, and the remainder is characterized by
low concentrations. Each of the light gray cells can be con-
ceptualized as consisting of 100 subcells, as illustrated in
Figures 1a–1d or as in Figures 1e–1h (with corresponding
distributions as shown in Figures 1i and 1j). If one were to
randomly obtain one water quality sample from each cell,
then one would expect to obtain 9 high samples and 91 low
samples. The probability of obtaining exactly nine high
samples (and exactly 91 low samples) is lower in Figure 1k
than in Figures 1e–1h; additional uncertainty is associated
with the more widespread distribution of the high con-
centrations over the entire aquifer (100 cells rather than
36 cells). Additional subdivision of the 100 light gray cells,
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for example, into a 20 × 20 or 30 × 30 subgrid rather than a
10 × 10 subgrid, would not introduce additional uncertainty:
within each light gray cell, the probability of sampling a
dark cell is 0.09. As described, the high concentrations in
Figure 1k are areas of finite size but of unknown location
within any given cell. The locations could be structured or
widely distributed within the cell. At the limit, the high
concentrations could be fully dispersed.
[14] Figures 1a–1k illustrate an important point: if one

divides an aquifer into cells of equal area and obtains one
water quality sample per cell, then the expected value of the
aquifer scale proportion does not depend on the spatial dis-
tribution of high concentrations; an assumption of homoge-
neity is not required. However, the uncertainty associated
with the grid‐based estimate does depend on the spatial dis-
tribution of high concentrations.
[15] In Figure 1l, a 5 × 5 sampling grid is overlain on an

aquifer in which the distribution and proportion of high
concentrations are unknown. For the purposes of estimating
aquifer scale proportion, the high concentrations might be
restricted to a few areas (Figures 1a–1h), distributed across

the aquifer system (Figure 1k), or have other characteristics
such as second‐order stationarity [Journel and Huijbregts,
1978]. For the purposes of estimating a confidence interval,
it is assumed that the high concentrations are uniformly dis-
tributed (Figure 1k), but not necessarily fully dispersed. The
5 × 5 equal area grid could be used to identify wells for
sampling (grid‐based approach) or it could be used for cell
declustering (spatially weighted approach). In this paper, the
focus is at the scale of the entire aquifer, with no attempt made
to evaluate the internal distribution of high concentrations.

3. Binomial Distribution and the Grid‐Based
Approach

[16] The binomial distribution assigns a probability b to
achieving a given number of successes k in a given number
of trials n, where the probability of success is p [Ott and
Longnecker, 2001]:

b k; n; pð Þ ¼ n
k

� �
pk 1� pð Þn�k¼ n!

k! n� kð Þ! p
k 1� pð Þn�k : ð1Þ

Figure 1. (a–h) The proportion of the aquifer with high concentrations is 9%. The nine dark cells in
Figures 1a–1d indicate concentrations that are uniformly high throughout the cell. The 36 gray cells in
Figures 1e–1h indicate an area where the target occupies 25% of the cell. For example, one gray cell can
be conceptualized as a 2 × 2 grid, with one dark cell (Figure 1i). Alternatively, one gray cell can be concep-
tualized as a 4 × 4 grid, with four dark cells (Figure 1j). (l) The proportion of the aquifer with high concen-
trations is 9%, the proportion within each cell is also 9%, and the configuration within each of the cells could
be as illustrated in the preceding representations. The aquifer is divided into 25 cells; the proportion and
distribution of high concentrations is unknown.
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In terms of water quality samples obtained using a grid‐based
approach (one well sampled per cell), the parameters of the
binomial distribution are defined as the number of samples
with high concentrations (k), the number of cells sampled (n),
and the proportion of the aquifer with high concentrations (p).
Three notable characteristics of the binomial distribution, as
applied to a grid‐based approach, are illustrated in Figure 2.
First, for any given observed detection frequency (variously
labeled curves in Figure 2), the highest probability is asso-
ciated with an aquifer where the proportion is equal to the
detection frequency; this characteristic is independent of the
number of cells in the grid. Second, the distribution (for a
given detection frequency) is narrower for a grid with more
cells than for a grid with less cells. Third, the distribution is
asymmetric at low (and high) detection frequency.
[17] Generally, the proportion of an aquifer with high

concentrations is unknown, and we seek to estimate its value
and to provide a confidence interval for that estimate. If a
grid‐based approach is used to obtain samples, then the most
likely estimate of the unknown proportion (p̂) is the observed
detection frequency ( f ),

p̂ ¼ f ¼ k=n: ð2Þ

The confidence interval for this estimate is discussed in
section 4.

4. Estimation of Confidence Intervals
for the Binomial Proportion

[18] The appropriate method for estimating a two‐sided
confidence interval for the binomial proportion has been the
subject of considerable research [Vollset, 1993; Agresti and
Coull, 1998; Brown et al., 2001, 2002; Cai, 2005]. In par-
ticular, these researchers have used coverage probability as
a criterion for evaluation. The coverage probability of a
confidence interval, for a fixed value of a parameter, is
the probability that the interval contains that value. These
researchers evaluated more than 15 methods for estimating
a confidence interval; most perform poorly, while a few
have acceptable coverage properties.
[19] The standard confidence interval (CIs) for the esti-

mated proportion (also known as the Wald interval) is

CIs ¼ p̂� z�=2
ffiffiffiffiffiffiffiffiffiffi
�2=n

p
; ð3aÞ

where za/2 is the (1 − a/2) quantile of the standard normal
distribution [Ott and Longnecker, 2001], a is the significance
level associated with the confidence interval, and s2 is the
variance. For a 90% confidence interval, a = 0.10.
[20] Given that s2 = p̂(1 − p̂)for a binomial distribution,

equation (3a) becomes

CIs ¼ p̂� z�=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ=n

p
: ð3bÞ

On the basis of the criterion of coverage probability,
numerous researchers recommend against using the Wald
interval. Brown et al. [2001, 2002] are unequivocal in their
rejection of the Wald interval, stating that it should not be
used under any circumstance (interested readers might want
to see the extensive discussions that accompany the article by
Brown et al. [2001]). For example, given a nominal confi-
dence interval of 0.95, the average coverage probability for
theWald interval is less than 0.92 for n < 100 and less than 0.8
for n < 20 [Brown et al., 2001]. In addition to poor coverage
probability, the Wald interval is symmetric and can provide
negative values and values larger than one, which are prob-
lematic for proportions. Vollset [1993] demonstrated that
continuity‐corrected modifications of theWald interval, such
as the Blyth and Still [1983] interval, have the same short-
comings as the Wald interval. Agresti and Coull [1998]
propose a modified Wald interval: add two successes and
two failures. Brown et al. [2001] have shown that the Agresti‐
Coull interval provides better coverage probability than the
Wald interval and suggest that the Agresti‐Coull interval can
be used for n > 40.
[21] The exact method [Clopper and Pearson, 1934] is a

commonly recommended alternative to the Wald interval.
The lower and upper bounds of the Clopper‐Pearson interval
are obtained by inverting equal‐tailed binomial tests of the
null hypothesis. Several researchers [Vollset, 1993; Agresti
and Coull, 1998; Brown et al., 2001; Brown et al., 2002]
have shown that the Clopper‐Pearson interval is inherently
conservative. For example, given a nominal confidence
interval of 0.95, the average coverage probability exceeds
0.98 for n < 50 and can approach 1.0 for n < 10. The

Figure 2. Binomial distribution illustrating the probability
of obtaining k detections using a grid‐based approach (one
sample per cell, n = number of cells), as a function of aquifer
proportion. (a and b) The number of cells is different, but the
detection frequency (f) is the same (f = 0, 0.1, 0.2, 0.3, 0.4,
0.5).

BELITZ ET AL.: EQUAL AREA GRIDS AND AQUIFER SCALE PROPORTION W11550W11550

4 of 14



conservatism of the Clopper‐Pearson interval leads to con-
fidence intervals that are unnecessarily wide.
[22] Agresti and Coull [1998] note that the Wilson score

confidence interval (CIW) represents a compromise between
the Wald and Clopper‐Pearson intervals; it is based on
inverting the approximately normal test at the null value of
the hypotheses,

CIW ¼ p̂þ
z2�=2
2n

� z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ þ z2�=2=4n
h i

=n

r !
= 1þ z2�=2=n
� �

:

ð4Þ

The two‐sided Wilson score interval has good coverage
probability [Vollset, 1993; Agresti and Coull, 1998; Brown
et al., 2001, 2002] and is relatively easy to compute.
Brown et al. [2001] have shown that the average coverage
probability for the Wilson interval is closer to the nominal
value than the Agresti‐Coull interval. Brown et al. [2002]
also showed that the Jeffreys interval and the likelihood
ratio interval provide two‐sided coverage properties com-
parable to the Wilson interval and suggest that any of the
three can be used.
[23] Brown et al. [2001], in their response to comments,

noted that a particular method can provide a two‐sided con-
fidence interval with good coverage probability, even while
failing to provide satisfactory one‐sided intervals. This
apparent anomaly occurs because of compensating one‐sided
errors. Cai [2005] evaluated coverage probability for one‐
sided confidence intervals. He found that the upper bound for
the Wilson interval provides overcoverage for small propor-
tions (p < 0.3) and undercoverage for large proportions (p >
0.7). The bias in the coverage, for a nominal confidence level
of 0.98, ranged from 0.01 to 0.02. In contrast, the coverage
probability of the Jeffreys interval is close to the nominal
confidence level for all values of p. Cai [2005] did not
evaluate the coverage probability for the upper bound of the
likelihood ratio interval.
[24] The Wald, Clopper‐Pearson, and Wilson intervals are

derived from a frequentist perspective [Brown et al., 2001;
Berger, 1985]. In contrast, the Jeffreys interval is derived
from application of Bayes’ theorem,

g p; k; nð Þ ¼ b k; n; pð Þg pð ÞZ 1

0
b k; n; pð Þg pð Þdp

; ð5Þ

where g(p; k, n) is the posterior distribution of the
aquifer scale proportion (p), given k and n, and g(p) is
the prior distribution of p. The lower and upper bounds of
the 100(1 − a)% confidence interval are the a/2 and 1 − a/2
quantiles of the posterior distribution. Alternatively stated,
the confidence interval is obtained by trimming the tails on
the posterior distribution.
[25] If g(p) = 1 (uniform prior distribution of p), then the

posterior distribution would simply be the binomial distri-
bution evaluated for the specified value of p (and k), nor-
malized by the cumulative distribution for all values of p (and
the fixed value of k). For example, graphs of g(p; k, n) would
have the same shapes as the graphs of Figure 2, but the
y values would be normalized by the area under the curves.
For a uniform prior, the cumulative distribution in the
denominator of equation (5) is equal to 1/(n + 1). Reijnders

et al. [1998], by trimming the tails on the cumulative bino-
mial distribution, used a uniform prior for evaluating a
confidence interval.
[26] A prior distribution can be identified using informa-

tion relevant to the problem at hand or, in the absence of
sufficient information, a noninformative prior can be used
[Berger, 1985]. For analytical and computational purposes, it
is useful to select a prior distribution that provides a posterior
distribution with the same mathematical form as the prior
distribution (a conjugate prior). The beta distribution is the
standard conjugate prior for the binomial distribution
[Berger, 1985].
[27] If a beta distribution [Beta(m1, m2)] is used in

equation (5), then

g p; k; nð Þ ¼ Beta k þ m1; n� k þ m2ð Þ; ð6Þ

where m1 and m2 are shape parameters. For a uniform prior,
m1 =m2 = 1. Although a uniform prior could be used, it is not
as noninformative as the Jeffreys prior [Berger, 1985]. The
use of Jeffreys prior leads to a confidence interval referred to
as the Jeffreys interval (m1 = m2 = 1=2 in equation (6)). Brown
et al. [2001] noted that the Jeffreys interval can be regarded as
a continuity‐corrected version of the Clopper‐Pearson inter-
val, thus providing a frequentist rationale for a Bayesian
method.
[28] The lower bound (L1−a) and upper bound (U1−a) of the

Jeffreys interval are found by inverting equation (6) at the
appropriate points of the distribution,

L1��ð0; nÞ ¼ 0 for k ¼ 0; ð7aÞ

L1��ðk; nÞ ¼ B�1ð�=2; k þ1=2; n� k þ1=2Þ for k > 0; ð7bÞ

U1��ðk; nÞ ¼ B�1ð1� �=2; k þ1=2; n� k þ1=2Þ for k < n; ð7cÞ

U1��ðn; nÞ ¼ 1 for k ¼ n; ð7dÞ

where B−1 (a; m1, m2) is the inverse of the cumulative
beta distribution. The inverse beta function can be evaluated
using commonly available software packages including
MS‐Excel®. Brown et al. [2001] also provide a formula
for approximating the bounds of the interval.
[29] For the purposes of illustration, the aquifer scale

proportion and confidence intervals associated with a single
detection are computed using the Jeffreys, Wilson, and
Agresti‐Coull methods for grids ranging in size from 10 to
100 cells (Figure 3). The value of the aquifer scale proportion
is closer to the lower bound than to the upper bound for all
three methods, reflecting the asymmetry of the binomial
distribution. For the range of values shown (10 ≤ n ≤ 100),
the width of the Jeffreys interval is about 90% of the width
of the Wilson interval and about 70% of the Agresti‐Coull
interval. As the number of detections increase (not shown in
Figure 3), the widths of the intervals become closer; for
example, for three detections the width of the Jeffreys interval
is about 97% of the width of the Wilson interval and about
88% of the Agresti‐Coull interval. The Jeffreys interval also
provides a narrower confidence interval than an interval
based on a uniform prior (not shown in Figure 3). For a single
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detection (10 ≤ n ≤ 100), the Jeffreys interval is about 88%
of the width of the interval obtained using a uniform prior,
and for three detections, the Jeffreys interval is about 96% of
the interval obtained using a uniform prior.
[30] In this paper, the Jeffreys method is used for com-

puting confidence intervals for aquifer scale proportions. The
Jeffreys interval is used because it provides a narrower con-
fidence interval and better one‐sided coverage probability
[Cai, 2005] than the Wilson and Agresti‐Coull intervals. The
Jeffreys interval also provides a narrower confidence interval
than an interval obtained using a uniform prior.

5. Incorporation of Additional Data: Spatially
Weighted Estimation of Aquifer Scale Proportion

[31] Incorporation of additional water quality data, beyond
one sample per cell, into the analysis of aquifer scale pro-
portion requires consideration of the potential effects of
clustering. For example, consider Figures 1a–1h. If one were
to obtain one water quality sample from the black cells and
more than one from the white cells, then the observed
detection frequency would be lower than the actual aquifer
scale proportion. Journel [1983] proposed the use of “cell
declustering” to estimate a global mean based on data that are
not uniformly distributed across the domain.
[32] In the cell declustering approach, an equal area grid is

overlain on the domain. A local value of aquifer scale pro-
portion (p̂i) is then computed for the ith grid cell, and a global
value for the domain is obtained by averaging the local values,

p̂i ¼ fi ¼ ki=nwi; ð8aÞ

p̂ ¼ 1

n

Xn

i¼1
p̂i; ð8bÞ

where ki is the number of water quality samples with high
concentrations in the ith cell and nwi is the number of wells

sampled in the ith cell. From a global perspective, the weight
assigned to any given well is inversely proportional to the
number of cells in the grid and the number of wells in the same
cell as that well. The value of p̂ computed using equations (8a)
and (8b) is defined as the spatially weighted aquifer scale
proportion. If there is only one well per cell, the spatially
weighted value is identical to the grid‐based detection fre-
quency (equation (2)).
[33] Isaaks and Srivastava [1989] note that the global

value obtained by cell declustering can be a function of the
number of cells and recommend finding the number of cells
that minimize (or maximize) the estimate. Finding an optimal
number of cells in a grid requires systematically varying the
number of rows and columns, and computing the global value
for each possible combination. In this paper, the global value
(spatially weighted aquifer scale proportion) is computed
using previously defined equal area grids. Aswill be shown in
the case studies, there are often a large number of constituents
present at high concentrations. Evaluation of an optimal grid
for each constituent could require considerable effort.
[34] For the purposes of discussion, the uncorrected

detection frequency computed using all the data is defined as
the raw detection frequency. In this paper, the grid‐based
aquifer scale proportion (p̂grid) is compared to both the raw
detection frequency and the spatially weighted value. If one
is making a comparison for several constituents, the over-
all difference can be evaluated using the mean absolute
deviation (MAD),

MAD ¼
Pnc
i¼1

p̂grid � p̂a
�� ��

nc
; ð9Þ

where nc is the number of constituents being compared and
p̂a is the value computed using all of the data (either the raw
detection frequency or the spatially weighted value).

6. Confidence Intervals for Spatially Weighted
Aquifer Scale Proportion

[35] Estimation of a confidence interval for the spatially
weighted aquifer scale proportion requires consideration of
the potential effects of clustering. Although the error asso-
ciated with the spatially weighted proportion cannot be
directly assessed [Journel, 1983], some understanding can be
obtained through consideration of the problem from three
perspectives: clustered sampling design, stratified sampling
design, and an aquifer with high concentrations that are fully
dispersed. For the first two perspectives, the distribution of
high concentrations is assumed to be unknown.
[36] Kish [1965] proposed the use of a design effect (DE)

for complex sampling designs, such as clustered sampling
and stratified sampling [also see Cochran, 1977; Kish, 1995;
Campbell et al., 2007]. The design effect (DE) is used to
adjust the total number of samples for the purpose of com-
puting a confidence interval,

n* ¼ Nwells=DE; ð10Þ

where n* is the effective number of samples and Nwells is the
actual number of wells sampled.
[37] A clustered sampling design is one in which clusters of

samples are obtained from a population (e.g., voters inter-
viewed at selected polling stations). If the equal area grid,

Figure 3. Estimated aquifer proportion and corresponding
90% confidence interval for a single detection, as a function
of the number of cells in the sampling grid.
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with multiple wells per cell, is viewed as a clustered sampling
design, then

DEc ¼ 1þ ma � 1ð Þ�; ð11aÞ

ma ¼ Nwells=n ð11bÞ

� ¼ �2
bc= �2

bc þ �2
wc

� 	 ¼ �2
bc=�

2
T; ð11cÞ

where DEc is the design effect for a clustered design,ma is the
average cluster size (average number of wells in a cell), r is
the intraclass correlation, sbc

2 is the between‐cluster
(between‐cell) variance, swc

2 is the within‐cluster (within‐
cell) variance, and sT

2 is the total variance.
[38] Given an effective sample size, one can compute an

effective number of successes (k*),

k* ¼ n*p̂: ð12Þ

The effective number of successes need not be an integer. The
confidence interval is computed by substituting n* and k* into
equations (7a)–(7d).
[39] The between‐cell variance can be computed in terms

of the previously defined local and aquifer scale proportions
(equations (8a) and (8b)),

�2
bc ¼

1

n

Xn
i¼1

p̂i � p̂ð Þ2: ð13Þ

The within‐cell variance can be computed as an average of
the variances computed for each cell,

�2
wc ¼

1

n

Xn

i¼1
�2
i ; ð14aÞ

�2
i ¼ p̂i 1� p̂ið Þ: ð14bÞ

The total variance can be computed as the sum of the
between‐cell and within‐cell variances,

�2
T ¼ �2

bc þ �2
wc; ð15aÞ

or from the spatially weighted aquifer scale proportion,

�2
T ¼ p̂ 1� p̂ð Þ: ð15bÞ

Computation using equations (15a) and (15b) provides a
check on the accuracy of the computations. From a geosta-
tistical perspective, equation (15a) is the dispersion variance
[Journel and Huijbregts, 1978].
[40] The characteristics of the design effect can be under-

stood by substituting equations (11a) through (11c) into (10)
and rearranging

1

n*
¼ 1� �

Nwells
þ �

n
ð16aÞ

or

�2
T

n*
¼ �2wc

Nwells
þ �2

bc

n
: ð16bÞ

Equation (16a) illustrates that the effective number of sam-
ples (n*) is a weighted function of the number of wells and the
number of cells. At a minimum, n* is equal to the number of
cells, and at a maximum, it is equal to the number of wells.
A confidence interval computed using the number of cells
would bewider than a confidence interval computed using the
number of wells.
[41] Equation (16b) provides additional insight into the

design coefficient. The left‐hand side of equation (16b) can
be viewed as the standard error associated with the spatially
weighted estimate. The first term on the right‐hand side can
be viewed as the standard error associated with a stratified
design [Kish, 1965; Cochran, 1977], and the second term on
the right‐hand side can be viewed as an additional source of
error associated with dividing the aquifer into n cells for the
purpose of declustering the data. Acceptance of the equal area
grid as a clustered design requires that the variance between
cells (sbc

2 ) arises from uncertainty, rather than from deter-
ministic differences between cells. This assumption could be
met if areas with high concentrations are uniformly distrib-
uted across the aquifer (Figure 1l); note that a uniform dis-
tribution is not identical to a fully dispersed distribution.
[42] In a stratified design, a finite population is divided into

subsets based on relevant criteria. If the equal area grid is
viewed as a stratified sampling design (with each cell treated
as an individual stratum) and there are ma wells in each cell,
the design effect (DEs) becomes [Kish, 1965; Cochran,
1977],

DEs ¼ Nwells

n*
¼ �2

wc

�2
T

: ð17Þ

Application of equation (17) results in an effective number of
samples (n*) equal to or larger than the actual number of wells
because swc

2 ≤ sT
2. Acceptance of the equal area grid as a

stratified design requires that the variance between cells (sbc
2 )

arises from deterministic differences between cells, rather
than contributing to uncertainty. For example, if high con-
centrations are structured (Figures 1a–1h) and the orientation
of the grid with that structure were known, equation (17)
could be used for computing n*.
[43] If high concentrations were fully dispersed across an

aquifer, then it is not necessary to decluster the data. With-
out structure or autocorrelation, all data have equal value
[Journel and Huijbregts, 1978]. In that case, the aquifer scale
proportion is computed as an unweighted mean and the
confidence interval is computed using the actual number of
wells.
[44] In the case studies presented in this paper, the effective

number of samples is computed from the perspective of a
clustered sampling design; DEc (equations (11a)–(11c)) is
substituted for DE in equation (10). Consequently, the con-
fidence intervals could be too wide. The clustered sampling
design effect is chosen because no additional work is done
to evaluate the distribution of high concentrations within
the aquifer. Analysis of the distribution for a large number
of constituents in a large number of aquifers could require
substantial effort.
[45] Conceptualization of the equal area grid as a stratified

design (with each cell as a separate stratum) differs from the
strategy of dividing an aquifer into selected subareas based
on hydrogeologic characteristics [Broers, 2002]. In the latter
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case, one is using prior information to identify subareas such
that points within the subarea are relatively similar to one
another and that points in different subareas are relatively
different from each other. In the latter case, one could use
equal area grids for each subarea, compute proportions and
confidence intervals for each subarea using methods
described in this paper, and then combine the results for the
larger aquifer system using methods for stratified sampling
[Cochran, 1977; Broers, 2002].

7. Detecting a Small Target Using a Grid‐Based
Approach

[46] A target is defined as that part of the aquifer with a
constituent present at high concentrations. The target might
be contiguous or it might be distributed (Figure 1). The size of
the target, when expressed as a function of the areal extent of
an aquifer, is equal to the aquifer scale proportion. From this
perspective, target size is a nondimensional parameter. Given
an equal area grid of n cells with one sample obtained per cell,
a target is defined as too small if it is unlikely to be detected.
Similarly, a target is defined as sufficiently large if it is
unlikely to be missed. Given these two definitions, one can
obtain a lower and upper bound for the size of a small target.
In turn, one can then assess the utility of the grid‐based
approach for identifying a small target.
[47] The probability of detecting a small target [D(n, ps)]

can be computed in terms of the probability of not detecting
the target (substituting k = 0 in equation (1)),

Dðn; psÞ ¼ 1� b 0; n; psð Þ: ð18aÞ

For the purposes of analysis, the size of a small target (ps) can
be expressed in terms of the number of cells in the grid,

Dðn; c=nÞ ¼ 1� b 0; n; c=nð Þ: ð18bÞ

For example, if a target is present at a proportion equal to one
out of n grid cells, then c = 1. In Figure 4, D(n, c/n) is plotted
as a function of n for several values of c. For n ranging from
20 to 100, the probability of detecting a small target is rela-
tively constant; for example, the probability of detecting a
target present at a proportion of 1.0/n is about 0.63. For n <
20, the probability of detection is somewhat greater than
0.63. This indicates that if a target has a size equal to a
single cell, then there is at least a 63% chance of detecting
that target.
[48] A target that is too small is defined as one that will be

detected at a probability p′, and a target that is sufficiently
large is defined as one that will be detected at a probability p,
where p > p′. If we require that p′ = (1 − p), then the lower and
upper bounds are expressed with respect to a single proba-
bility level p. Establishment of this requirement reflects a
“balancing of errors” [Smith et al., 2001; McBride and Ellis,
2001; McBride, 2003]; the probability of not detecting a
target at the lower bound is equal to the probability of
detecting the target at the upper bound.
[49] Given a specified probability level (p), a small target is

bounded in size by a lower limit (pl∣p) and an upper limit
(pujp),

plj� � psj� � puj�: ð19aÞ

The lower and upper limits are found by inverting
equation (18b),

plj� ¼ D�1 � 0; n; c1=nð Þ ¼ D�1 1� �; n; c1=nð Þ; ð19bÞ

puj� ¼ D�1 �; n; c2=nð Þ: ð19cÞ

The subscripts for the constant c are different in
equations (19b) and (19c) and reflect the different probabil-
ities associated with detecting a target that is too small as
compared to a target that is sufficiently large.
[50] For p = 0.9, the lower and upper bounds on the size

of a small target are approximately (Figure 4),

0:10

n
� psj�¼0:9 � 2:2

n
: ð20aÞ

Given a grid of 50 cells, a small target is unlikely to be
detected if it is present in less than 0.2% of the aquifer system,
and it is unlikely to bemissed if it is present inmore than 4.4%
of the aquifer system.
[51] For p = 0.95, the size of a small target is approximately

(not shown in Figure 3),

0:05

n
� psj�¼0:95 � 3:0

n
: ð20bÞ

If p = 0.5, then the small target is one where the probability
of being detected is equal to the probability of being missed.
For n ranging from 20 to 100,

psj�¼0:5 ¼ D�1 0:5; n; c=nð Þ � 0:7=n: ð20cÞ

If a target is present at a proportion less than 0.7/n, then the
target is more likely than not to be missed. Conversely, if

Figure 4. A small target is defined in terms of the size of the
grid. Each of the curves is for a target of specified size (pro-
portion of aquifer with high concentrations). The curve
labeled 1.0/n is a target present at a proportion equal to 1
out of n grid cells; the probability of detecting a target of this
size is about 0.63. The curve labeled 2.2/n can be defined as a
target that is unlikely to be missed. The curve labeled 0.1/n
can be defined as a target that is unlikely to be detected.
The curve labeled 0.7/n defines a target with an equal proba-
bility of being detected or not detected.
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the target is present at a proportion more than 0.7/n, then
the target is more likely than not to be detected.

8. Confidence Intervals for a Constituent Detected
at 10% Frequency Using a Grid‐Based Approach
(Prevalent Constituents)

[52] Regional assessments of groundwater quality can
include analyses for dozens or even hundreds of constituents.
Given the potential for detecting a large number of con-
stituents, one might choose to focus more attention on those
constituents that are prevalent (frequently detected) and less
attention on those that are not. The detection frequency for
defining prevalence is subjective; one possibility is a detec-
tion frequency equal to or exceeding 10%.
[53] The aquifer scale proportion for a prevalent constitu-

ent and the associated bounds for the 90% confidence interval
are plotted in Figure 5. Each of the upward steps in the graphs
represents a step change from k high values to k + 1 high
values; the transition from k to k + 1 is required so that the
detection frequency is equal to or exceeds 10%. For example,
when n increases from 10 to 11, k increases from 1 to 2. For a
small number of cells (n ≤ 20, with the exception of n = 10),
the lower bound of the 90% confidence interval is above 2%.
For a larger number of cells (20 < n ≤ 30), the lower bound is
above 3%. For n ≥ 60, the lower bound is above 5%. Noting
that the lower bound of a 90% confidence interval is also a
one‐sided 95% confidence level, inferences can be drawn
about prevalent constituents: for a small grid (n ≤ 20, with the
exception of n = 10), there is at least a 95% confidence that a
prevalent constituent is present in more than 2% of the
aquifer; for a larger grid (n ≥ 60), there is at least a 95%
confidence that a prevalent constituent is present in more than
5% of the aquifer.

9. Case Studies From California’s GAMA
Program

[54] The U.S. Geological Survey (USGS), in collaboration
with the California Water Board’s Ground Water Ambient
Monitoring and Assessment program (GAMA), is imple-
menting an evaluation of groundwater quality in about 120
groundwater basins in California [Belitz et al., 2003]; these
evaluations are called priority basin assessments. The priority

groundwater basins, along with selected areas outside of
basins, have been aggregated into study units; it is anticipated
that about 35 study units will be evaluated. The priority basin
assessments are based on groundwater quality data from
existing wells, primarily wells used for public supply. In
this paper, data from two study units are presented as
examples. Mendizabal and Stuyfzand [2009] discuss the
utility of using public supply wells for the purposes of
assessing regional groundwater quality.
[55] The GAMA program uses equal area grids to design a

sampling network. Within each grid cell, one public supply
well is randomly selected for sampling [Scott, 1990]. If
there are no public supply wells available in a cell, then an
attempt is made to sample a well tapping the same depth zone
as public supply wells located in nearby cells. For the pur-
poses of discussion, wells sampled as part of the equal area
grid network are referred to as grid wells. Additional wells are
also sampled for the purposes of evaluating the human and
natural factors that may affect water quality; these wells are
referred to as understanding wells.
[56] All grid and understanding wells are sampled for an

extensive suite of organic constituents and selected field
parameters, but not all wells are sampled for inorganic con-
stituents. The California Department of Public Health
(CDPH) maintains a database containing chemical analyses
conducted for the purposes of regulatory compliance; these
data are used to provide additional coverage for those cells
where inorganic data were not collected by the USGS. The
USGS anticipates sampling about 2500 wells for the GAMA
program, and there are about 15,000 public supply wells with
chemical data in the CDPH database. The USGS uses ana-
lytical methods that evaluate water quality samples for a
larger suite of organic constituents and at lower detection
levels (1–2 orders of magnitude lower) than the analytical
methods used for regulatory compliance. The analytical
methods used for regulatory compliance are suitable for
evaluating concentrations relative to health‐based and
aesthetic thresholds. Detections of anthropogenic organic
compounds at very low concentrations can provide additional
information about the potential impact of human activities
on groundwater quality [Shelton et al., 2001; Worrall and
Besien, 2005].

9.1. Case Study 1: Concentrations Above Health‐Based
Thresholds in the Central Eastside Study Unit

[57] The Central Eastside study unit (Figure 6) is located in
California’s San Joaquin Valley. The Central Eastside study
unit was sampledwith four equal area grids. Three of the grids
correspond to Quaternary alluvial deposits in each of the
Modesto, Merced, and Turlock groundwater basins, and the
fourth grid corresponds to Quaternary‐Pleistocene consoli-
dated deposits that form elevated terraces along the eastern
portions of the three basins (Figure 6). A total of 60 grid cells
were identified, with each cell having an area of 100 km2.
Fifty‐eight grid wells were sampled by the USGS fromMarch
through June 2006. Twenty additional wells were sampled for
the purposes of understanding; of these, three are screened
within the depth zone used for public supply. For the purposes
of illustration, the study unit is evaluated as a single aquifer,
and data from the four grids are combined. A more accurate
estimate for aquifer scale proportion could be obtained if
each of the grids were evaluated separately. Landon and

Figure 5. 90% confidence intervals for a prevalent com-
pound (≥10% detection frequency).
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Belitz [2008] provide an overview of the study area, a
description of the sampling program and summarize the data
collected for the Central Eastside study unit.
[58] The CDPH database, along with the data collected

by the USGS, was used to identify constituents present at
concentrations above health‐based benchmarks (Table 1) in
the Central Eastside (Table 2). For the purpose of assessing
current groundwater quality, the analysis was restricted to
the most recent data for each constituent at each well in the

CDPH database during the 3 year period from March 2003
through February 2006. For the constituents listed in Table 2,
the number of grid wells ranged from 28 to 58. The total
number of wells available for each constituent ranged from
133 to 372, and the effective number of wells (equations (10)
and (11a)–(11c)) used for computing a confidence interval
ranged from 72 to 287.
[59] Four constituents were detected above health‐based

benchmarks in the grid wells and in the CDPH database
(Table 2a) and an additional seven constituents were detected
above benchmarks, but only in the CDPH database
(Table 2b). For 10 of the 11 constituents, the spatially
weighted aquifer proportion is within the 90% confidence
interval computed from the grid wells. In contrast, the raw
detection frequency is within the 90% grid‐based confidence
interval for 8 constituents and outside the range for 3. For
the 11 constituents as a group, the MAD (equation (9)) is
1.8% for the spatially weighted values and 3.0% for the raw
detection frequencies. Overall, spatial weighting shifts the
aquifer scale proportion toward the value determined from
the equal area grid sampling.
[60] Given the grid‐based and spatially weighted estimates

of aquifer scale proportion (Table 2), it is illustrative to cal-
culate the size of a small target. The median number of grid
wells for the constituents listed in Table 2 is 43 (the average
is 44). At a 90% confidence level (equation (20a)), a target
is too small to be detected if it is present in less than 0.2% of
the aquifer, and it is unlikely to be missed (sufficiently large)
if it is present in more than 5.2%.
[61] Table 2a includes constituents detected above bench-

marks in both the grid wells and in the CDPH database. All of
these constituents have spatially weighted proportions larger
than 0.2%. Targets that are too small to be detected (at a 90%
confidence level) were not detected using the grid‐based
sampling design.
[62] Table 2b includes constituents above thresholds

only in the CDPH database. Six of the seven constituents
have spatially weighted proportions less than 5.2%. One
constituent (gross‐alpha) has a spatially weighted proportion
of 5.9%, and for n = 37 a sufficiently large target would be
6%. None of the targets that were missed by the grid‐based
sampling design were sufficiently large.

Figure 6. Maps of equal area grids, grid wells (solid cir-
cles), and nongrid wells (open circles) in the Central Eastside
San Joaquin Study Unit and Southern Sierras Study unit.

Table 1. Health‐Based Benchmarks for Constituents Listed in
Tables 2 and 3a

Constituent Threshold Type Threshold Concentration

Antimony MCL‐US 6 mg/L
Arsenic MCL‐US 10 mg/L
Boron NL‐CA 1000 mg/L
Copper MCL‐US 1300 mg/L
DBCP MCL‐US 0.2 mg/L
Fluoride MCL‐CA 2 mg/L
Gross alpha MCL‐US 15 pCi/L
Lead MCL‐US 15 mg/L
Nitrate MCL‐US 10 mg/L
PCE MCL‐US 5 mg/L
Radium MCL‐US 5 pCi/L
Selenium MCL‐US 50 mg/L
Uranium MCL‐US 30 mg/L
Vanadium NL‐CA 50 mg/L

aMCL, maximum contaminant level; NL, notification level; US, threshold
established by U.S. Environmental Protection Agency; CA, threshold
established by California Department of Public Health.
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9.2. Case Study 2: Concentrations Above Health‐Based
Thresholds in the Southern Sierra Study Unit

[63] The Southern Sierra study unit is located in the
southern end of the Sierra Nevada (Figure 6). The study
unit included several small basins of Quaternary fluvial
and alluvial deposits and selected areas of Mesozoic granitic
and Mesozoic‐Paleozoic rocks. The Southern Sierra study
unit included all areas within 3 km of a public supply well and
was sampled with a single equal area grid, consisting of
40 cells, each with an area of 30 km2 (Figure 6). Thirty‐five
grid wells and 15 understanding wells were sampled by the
USGS. Fram and Belitz [2007] provide an overview of the
study area, a description of the sampling program and sum-
marize the data collected for the Southern Sierra study unit.
[64] The USGS sampled wells in the Southern Sierra in

June 2006 and the most recent CDPH data were from
February 2006. For the purpose of assessing current
groundwater quality, the analysis was restricted to the most
recent data for each constituent at each well in the CDPH
database during the 3 year period from January 2003 through
February 2006. For the constituents listed in Table 3, the

number of grid wells ranged from 13 to 33, the total number
of wells ranged from 43 to 204, and the effective number
ranged from 21 to 115. The number of wells available in
the Southern Sierra study unit is substantially less than the
number of wells available in the Central Eastside study unit.
[65] Six constituents were detected above health‐based

benchmarks in the grid wells and in the CDPH database
(Table 3a). Two additional constituents were detected above
benchmarks only in the CDPH database (Table 3b). Overall,
the constituents detected above benchmarks in the Southern
Sierra study unit were detected more frequently than those
in the Central Eastside; the average spatially weighted pro-
portion for the constituents in Table 3 (Southern Sierras) was
9% as compared to 2% in Table 1 (Central Eastside).
[66] For all eight constituents detected above benchmarks

in the Southern Sierra study unit, the spatially weighted and
the raw detection frequencies are within the 90% confidence
intervals computed for the grid wells. For the eight con-
stituents as a group, the MAD (equation (9)) was 1.4% for
the spatially weighted values and 3.2% for the raw detection
frequencies; spatial weighting shifts the aquifer scale pro-
portion toward the grid‐based estimate.

Table 2. Case Study for Concentrations Above Health‐Based Benchmarks Listed in Table 1 in the Central Eastsidea

Constituent

Grid Data (One Sample per Cell) Grid + Additional Data (Many Samples per Cell)

Num. Wells
(Cells) Prop.

90% CI Num.
Wells

Raw
Det. Freq.

Spatially Weighted
Prop.

Effective Num.
Wells

90% CI

Lower Upper Lower Upper

Constituents With High Concentrations in Grid Wells
Arsenic 45 15.6% 8.3% 25.9% 348 8.9% 12.7% 72 7.4% 20.3%
Vanadium 28 3.6% 0.6% 13.1% 133 5.3% 1.4% 81 0.3% 5.0%
Lead 42 2.4% 0.4% 8.9% 325 0.6% 0.4% 202 0.1% 1.7%
Nitrate 48 2.1% 0.4% 7.9% 480 5.0% 3.4% 140 1.5% 6.7%

Constituents With High Concentrations in Additional (CDPH) Data Set but not in Grid Wells
Gross‐alpha 37 0.0% 0.0% 3.6% 282 8.2% 5.9% 106 3.0% 10.6%
Uranium 33 0.0% 0.0% 4.0% 191 6.3% 3.6% 107 1.5% 7.5%
DBCP 58 0.0% 0.0% 2.3% 372 3.5% 1.0% 211 0.3% 2.7%
Copper 44 0.0% 0.0% 3.0% 332 0.3% 0.3% 186 0.0% 1.6%
Antimony 43 0.0% 0.0% 3.1% 336 0.3% 0.2% 199 0.0% 1.5%
PCE 58 0.0% 0.0% 2.3% 365 0.8% 0.2% 287 0.0% 1.0%
Selenium 43 0.0% 0.0% 3.1% 337 0.3% 0.2% 228 0.0% 1.2%

aFor constituents with high concentrations in grid wells. For constituents with high concentrations in additional data set but not in grid wells. The lower
and upper confidence limits are computed using the Jeffreys interval. For nonzero proportions, the confidence interval is computed as a two‐sided interval; for
zero, a one‐sided interval is computed. CDPH, California Department of Public Health; CI, confidence interval; Num., number; Prop., proportion; Det. Freq.,
detection frequency.

Table 3. Case Study for Concentrations Above Health‐Based Benchmarks Listed in Table 1 in the Southern Sierrasa

Constituent

Grid Data (One Sample per Cell) Grid + Additional Data (Many Samples per Cell)

Num. Wells
(Cells) Prop.

90% CI Num.
Wells

Raw Det.
Freq.

Spatially Weighted
Prop.

Effective Num.
Wells

90% CI

Lower Upper Lower Upper

Constituents With High Concentrations in Grid Wells
Arsenic 29 20.7% 11.0% 35.0% 173 14.5% 17.7% 45 10.0% 28.5%
Gross alpha 23 17.4% 8.1% 34.0% 143 13.3% 17.9% 40 9.7% 29.3%
Fluoride 30 10.0% 4.1% 22.0% 168 6.5% 6.7% 49 2.6% 14.5%
Uranium 21 9.5% 3.2% 25.0% 95 7.4% 10.8% 28 4.0% 23.4%
Boron 13 7.7% 1.7% 28.0% 80 3.8% 6.4% 21 1.5% 19.5%
Nitrate 33 3.0% 0.7% 12.5% 204 5.4% 3.5% 104 1.4% 7.5%

Constituents With High Concentrations in Additional (CDPH) Data Set but not in Grid Wells
Radium 10 0.0% 0.0% 21.0% 43 2.3% 1.1% 33 0.1% 7.9%
Antimony 27 0.0% 0.0% 9.1% 163 0.6% 0.3% 115 0.0% 2.3%

aFor constituents with high concentrations in grid wells. For constituents with high concentrations in additional data set but not in grid wells. The lower
and upper confidence limits are computed using the Jeffreys interval. For nonzero proportions, the confidence interval is computed as a two‐sided interval;
for zero, a one‐sided interval is computed. CDPH, California Department of Public Health; CI, confidence interval; Num, number; Prop., proportion; Det.
Freq., detection frequency.
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[67] In the Southern Sierras, as in the Central Eastside, it is
illustrative to calculate the size of a small target. The median
number of grid wells for the constituents in Table 3 is 25 (the
average is 23). At a 90% confidence level, a target is unlikely
to be detected if it is present in less than 0.4% of the aquifer;
all of the constituents in Table 3a are above this threshold. At
a 90% confidence level, a target is unlikely to be missed if it
is present in more than 8.8% of the aquifer; all of the con-
stituents in Table 3b are below this threshold. In the Southern
Sierras, as in the Central Eastside, a target that is too small
was not detected using grid‐based sampling, and a target that
is sufficiently large was not missed. In the Southern Sierras,
a small target is larger than a small target in the Central
Eastside, because there are fewer grid wells available in the
Southern Sierras.

9.3. Case Study 3: Detections of Organic Compounds
in the Southern Sierra Study Unit

[68] The presence of anthropogenic organic constituents
at low concentrations in aquifers used for public supply can
provide an indication of the extent to which human activities
influence groundwater quality. In the Southern Sierra study
unit, fourteen organic compounds were detected using low‐
level analytical methods, but only twowere detected using the
less sensitive methods required for regulatory compliance
(Table 4). None of the detections were above a health‐based
benchmark; most were at concentrations less than 1/100 of
the benchmark [Fram and Belitz, 2007]. Five of the organic
compounds were prevalent (detection frequency ≥ 10%)
using low‐level analytical methods, but none were prevalent
using the less sensitive analytical methods. If one were to rely
only on the CDPH data, one would underestimate the extent
to which anthropogenic compounds are present in the public
supply aquifer system.
[69] Three of the organic compounds were detected only in

the understanding wells. The spatially weighted aquifer scale
proportion is correspondingly low. If one were to rely only on
the grid wells for computation of aquifer scale proportions,
then one would not be able to quantify the occurrence of the
three compounds detected only in the understanding wells.
Cell declustering provides a basis for estimating these aquifer

scale proportions. The list of compounds that are prevalent is
identical whether one uses only the grid wells or if one uses
spatial weighting with all of the available GAMA data.
Overall, the aquifer scale proportions estimated using the grid
wells is similar to the proportions estimated using spatial
weighting of grid and understanding wells (MAD = 0.7%).

10. Conclusions

[70] Aquifer scale proportion can be viewed as a nondi-
mensional measure of regional scale groundwater quality.
From that perspective, it can be used as a criterion for
determining which constituents in an aquifer are more note-
worthy and which are less so. For example, a constituent that
is high in 10% of an aquifer could be considered more
noteworthy than one that is high in 2% of an aquifer. Aquifer
scale proportion can also be used as a criterion for comparing
different aquifers: an aquifer with a smaller proportion of high
concentrations could be considered to have better water
quality than an aquifer with a larger proportion of high con-
centrations. If one were to use aquifer scale proportion as a
measure of water quality, one would clearly want to define
what is meant by high concentrations.
[71] Equal area grids and the binomial distribution provide

a basis for obtaining a spatially unbiased estimate of the
aquifer scale proportion and a confidence interval for that
estimate. If one water quality sample is obtained from each
grid cell (grid‐based approach), the aquifer scale proportion is
equal to the observed detection frequency, and the observed
number of water quality samples (number of cells) is used
to estimate a confidence interval. The Jeffreys confidence
interval is identified as the preferred method among a number
of methods considered. If one were to use a grid‐based
approach, one would want to insure that the equal area grid is
representative of the area under consideration.
[72] If many wells are available per cell, then one needs to

account for the potential effects of spatial correlation. One
simple approach is cell declustering, whereby each well is
assigned a weight proportional to the number of cells in the
grid and the number of wells in the cell containing that well.
The aquifer scale proportion is then computed as a weighted
sum. Confidence intervals for the spatially weighted estimate

Table 4. Case Study for Detections of Organic Constituents at Any Concentration, Southern Sierrasa

Compound Compound Type
USGS MDL

(mg/L)
CDPH MDL

(mg/L)

Aquifer Scale Proportion

GAMA Grid
Based

GAMA Spatially
Weighted

CDPH Spatially
Weighted

Chloroform Trihalomethane 0.012 0.5 17.1% 16.2% 5.8%
Deethylatrazine Herbicide degradate 0.007 na 14.3% 15.1% na
PCE Solvent 0.015 0.5 14.3% 14.8% 0.5%
Atrazine Herbicide 0.0035 0.3 14.3% 14.7% 0.0%
Simazine Herbicide 0.0025 0.3 11.4% 12.4% 0.0%
Prometon Herbicide 0.005 0.5 5.7% 5.7% 0.0%
CFC‐11 Refrigerant 0.04 0.5 2.9% 3.3% 0.0%
Carbon tetrachloride Solvent 0.03 0.5 2.9% 2.9% 0.0%
CFC‐113 Refrigerant 0.019 0.5 2.9% 2.9% 0.0%
TCE Solvent 0.02 0.5 2.9% 1.4% 0.0%
MTBE Gasoline oxygenate 0.05 0.5 2.9% 1.4% 0.0%
1,2‐Dichlorobenzene Solvent 0.024 0.5 0.0% 1.0% 0.0%
cis‐1,2‐Dichloroethene Solvent 0.012 0.5 0.0% 1.0% 0.0%
1,2‐Dichloropropane Fumigant 0.015 0.5 0.0% 0.4% 0.0%

aGrid‐based proportion based on 35 grid wells. GAMA spatially weighted proportion based on 50 wells total (in 35 cells). CDPH spatially weighted
proportion based on 71–143 wells. na, not available; USGS, United States Geological Survey; CDPH, California Department of Public Health; MDL,
method detection limit; mg/L, micrograms per liter.
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can be obtained using Kish’s design effect to compute an
effective sample size. If the cell declustering method is
viewed as a clustered design, the effective sample size ranges
from the number of cells in the grid to the total number of
wells. Given this range, the confidence interval for the spa-
tially weighted proportion is equal to or narrower than the
confidence interval for the grid‐based proportion. If the cell
declustering method is viewed as a stratified design, then the
effective sample size could be larger than the total number of
wells. This could lead to a substantial narrowing of the
computed confidence interval. Identification of an appropri-
ate design effect remains an important issue to be addressed.
[73] The binomial distribution is used to evaluate the

adequacy of the grid‐based approach for identifying a small
target, which is defined as a constituent with high con-
centrations in a small proportion of the aquifer (ps). At a 90%
(one‐sided) confidence level, a small target is unlikely to be
detected if ps ≤ 0.1/n (where n is the number of cells) and is
unlikely to be missed if ps > 2.2/n. These bounds provide
perspective for the interpretation of results from a grid‐based
sampling program. For example, if a grid consists of 50 cells, a
target is unlikely to be detected if it is present in less than 0.2%
of the aquifer, and it is unlikely to be missed if it is present in
more than 4.4%. These bounds can also be used to design a grid
network. For example, if onewants to identify constituents that
are present at high concentrations in 5% of an aquifer system
(at a 90% confidence level), then one would need to design
a grid with 44 cells. If one can subsequently bring additional
data into the analysis, then one can identify smaller targets
than if one relies only on one sample per grid cell.
[74] The methods presented in this paper are applied to

three case studies in California: (1) concentrations above
health‐based benchmarks in the Central Eastside of the San
Joaquin Valley, (2) concentrations above health‐based
benchmarks in the Southern Sierras, and (3) detections of
volatile organic compounds and pesticides above analytical
limits in the Southern Sierras. The first two case studies
demonstrate a consistency between grid‐based and spatially
weighted estimates of aquifer scale proportion. The first two
case studies also illustrate the benefit of having more data
available: the width of the confidence interval is reduced and
smaller targets are identified. The third case study indicates
the value of better quality data: lower detection limits provide
a more accurate assessment of the presence of anthropogenic
compounds in an aquifer system.
[75] The use of aquifer scale proportion as a measure of

regional scale groundwater quality provides an objective
basis for comparing different constituents (or groups of
constituents) to one another, for comparing one aquifer to
another, and for obtaining a better understanding of the fac-
tors affecting groundwater quality [Broers, 2002, 2004]. The
approach presented in this paper is particularly useful when
one is evaluating a large number of constituents in a large
number of wells in a large number of aquifers. The approach
presented in this paper can be generalized to contaminants in
media other than groundwater.

[76] Acknowledgments. The authors appreciate the financial support
of the California State Water Resources Control Board, the cooperation of
well owners in California, the efforts of USGS colleagues who participated
in the sampling program, and the reviewers at the USGS and WRR who
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